Files
@ r28520:f9aebe299cae
Branch filter:
Location: cpp/openttd-patchpack/source/src/tests/math_func.cpp
r28520:f9aebe299cae
4.4 KiB
text/x-c
Codechange: MacOS already has MIN/MAX macros defined
This is caused because we use PreCompile Headers, and one of them
includes a system headers which defines MIN/MAX.
This is caused because we use PreCompile Headers, and one of them
includes a system headers which defines MIN/MAX.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | /*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file math_func.cpp Test functionality from core/math_func. */
#include "../stdafx.h"
#include "../3rdparty/catch2/catch.hpp"
#include "../core/math_func.hpp"
TEST_CASE("LeastCommonMultipleTest - Zero")
{
CHECK(0 == LeastCommonMultiple(0, 0));
CHECK(0 == LeastCommonMultiple(0, 600));
CHECK(0 == LeastCommonMultiple(600, 0));
}
TEST_CASE("LeastCommonMultipleTest - FindLCM")
{
CHECK(25 == LeastCommonMultiple(5, 25));
CHECK(25 == LeastCommonMultiple(25, 5));
CHECK(130 == LeastCommonMultiple(5, 26));
CHECK(130 == LeastCommonMultiple(26, 5));
}
TEST_CASE("GreatestCommonDivisorTest - Negative")
{
CHECK(4 == GreatestCommonDivisor(4, -52));
// CHECK(3 == GreatestCommonDivisor(-27, 6)); // error - returns -3
}
TEST_CASE("GreatestCommonDivisorTest - Zero")
{
CHECK(27 == GreatestCommonDivisor(0, 27));
CHECK(27 == GreatestCommonDivisor(27, 0));
}
TEST_CASE("GreatestCommonDivisorTest - FindGCD")
{
CHECK(5 == GreatestCommonDivisor(5, 25));
CHECK(5 == GreatestCommonDivisor(25, 5));
CHECK(1 == GreatestCommonDivisor(7, 27));
CHECK(1 == GreatestCommonDivisor(27, 7));
}
TEST_CASE("DivideApproxTest - Negative")
{
CHECK(-2 == DivideApprox(-5, 2));
CHECK(2 == DivideApprox(-5, -2));
CHECK(-1 == DivideApprox(-66, 80));
}
TEST_CASE("DivideApproxTest, Divide")
{
CHECK(2 == DivideApprox(5, 2));
CHECK(3 == DivideApprox(80, 30));
CHECK(3 == DivideApprox(8, 3));
CHECK(0 == DivideApprox(3, 8));
}
TEST_CASE("IntSqrtTest - Zero")
{
CHECK(0 == IntSqrt(0));
}
TEST_CASE("IntSqrtTest - FindSqRt")
{
CHECK(5 == IntSqrt(25));
CHECK(10 == IntSqrt(100));
CHECK(9 == IntSqrt(88));
CHECK(1696 == IntSqrt(2876278));
}
TEST_CASE("ClampTo")
{
CHECK(0 == ClampTo<uint8_t>(std::numeric_limits<int64_t>::lowest()));
CHECK(0 == ClampTo<uint8_t>(-1));
CHECK(0 == ClampTo<uint8_t>(0));
CHECK(1 == ClampTo<uint8_t>(1));
CHECK(255 == ClampTo<uint8_t>(std::numeric_limits<uint64_t>::max()));
CHECK(255 == ClampTo<uint8_t>(256));
CHECK(255 == ClampTo<uint8_t>(255));
CHECK(254 == ClampTo<uint8_t>(254));
CHECK(-128 == ClampTo<int8_t>(std::numeric_limits<int64_t>::lowest()));
CHECK(-128 == ClampTo<int8_t>(-129));
CHECK(-128 == ClampTo<int8_t>(-128));
CHECK(-127 == ClampTo<int8_t>(-127));
CHECK(127 == ClampTo<int8_t>(std::numeric_limits<uint64_t>::max()));
CHECK(127 == ClampTo<int8_t>(128));
CHECK(127 == ClampTo<int8_t>(127));
CHECK(126 == ClampTo<int8_t>(126));
CHECK(126 == ClampTo<int64_t>(static_cast<uint8_t>(126)));
CHECK(126 == ClampTo<uint64_t>(static_cast<int8_t>(126)));
CHECK(0 == ClampTo<uint64_t>(static_cast<int8_t>(-126)));
CHECK(0 == ClampTo<uint8_t>(static_cast<int8_t>(-126)));
/* The realm around 64 bits types is tricky as there is not one type/method that works for all. */
/* lowest/max uint64_t does not get clamped when clamping to uint64_t. */
CHECK(std::numeric_limits<uint64_t>::lowest() == ClampTo<uint64_t>(std::numeric_limits<uint64_t>::lowest()));
CHECK(std::numeric_limits<uint64_t>::max() == ClampTo<uint64_t>(std::numeric_limits<uint64_t>::max()));
/* negative int64_t get clamped to 0. */
CHECK(0 == ClampTo<uint64_t>(std::numeric_limits<int64_t>::lowest()));
CHECK(0 == ClampTo<uint64_t>(int64_t(-1)));
/* positive int64_t remain the same. */
CHECK(1 == ClampTo<uint64_t>(int64_t(1)));
CHECK(static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) == ClampTo<uint64_t>(std::numeric_limits<int64_t>::max()));
/* max uint64_t gets clamped to max int64_t. */
CHECK(std::numeric_limits<int64_t>::max() == ClampTo<int64_t>(std::numeric_limits<uint64_t>::max()));
}
TEST_CASE("SoftClamp")
{
/* Special behaviour of soft clamp returning the average of min/max when min is higher than max. */
CHECK(1250 == SoftClamp(0, 1500, 1000));
int million = 1000 * 1000;
CHECK(1250 * million == SoftClamp(0, 1500 * million, 1000 * million));
CHECK(0 == SoftClamp(0, 1500 * million, -1500 * million));
}
|