Files @ r14895:fb237f7e7f5b
Branch filter:

Location: cpp/openttd-patchpack/source/src/misc/blob.hpp

peter1138
(svn r19502) -Codechange: During NewGRF loading, store rail type labels in temporary data and process after loading has finished. This avoids deactivated rail vehicles being reactivated if the climate property is set after the rail type property.
/* $Id$ */

/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file blob.hpp Support for storing random binary data. */

#ifndef BLOB_HPP
#define BLOB_HPP

#include "../core/alloc_func.hpp"
#include "../core/mem_func.hpp"
#include <new>

/** Base class for simple binary blobs.
 *  Item is byte.
 *  The word 'simple' means:
 *    - no configurable allocator type (always made from heap)
 *    - no smart deallocation - deallocation must be called from the same
 *        module (DLL) where the blob was allocated
 *    - no configurable allocation policy (how big blocks should be allocated)
 *    - no extra ownership policy (i.e. 'copy on write') when blob is copied
 *    - no thread synchronization at all
 *
 *  Internal member layout:
 *  1. The only class member is pointer to the first item (see union).
 *  2. Allocated block contains the blob header (see BlobHeader) followed by the raw byte data.
 *     Always, when it allocates memory the allocated size is:
 *                                                      sizeof(BlobHeader) + <data capacity>
 *  3. Two 'virtual' members (items and capacity) are stored in the BlobHeader at beginning
 *     of the alloated block.
 *  4. The pointer of the union pobsize_ts behind the header (to the first data byte).
 *     When memory block is allocated, the sizeof(BlobHeader) it added to it.
 *  5. Benefits of this layout:
 *     - items are accessed in the simplest possible way - just dereferencing the pointer,
 *       which is good for performance (assuming that data are accessed most often).
 *     - sizeof(blob) is the same as the size of any other pointer
 *  6. Drawbacks of this layout:
 *     - the fact, that pointer to the alocated block is adjusted by sizeof(BlobHeader) before
 *       it is stored can lead to several confusions:
 *         - it is not common pattern so the implementation code is bit harder to read
 *         - valgrind can generate warning that allocated block is lost (not accessible)
 */
class ByteBlob {
protected:
	/** header of the allocated memory block */
	struct BlobHeader {
		uint    items;      ///< actual blob size in bytes
		uint    capacity;  ///< maximum (allocated) size in bytes
	};

	/** type used as class member */
	union {
		byte *data;    ///< ptr to the first byte of data
		BlobHeader *header;   ///< ptr just after the BlobHeader holding items and capacity
	};

private:
	/**
	 * Just to silence an unsilencable GCC 4.4+ warning
	 * Note: This cannot be 'const' as we do a lot of 'hdrEmpty[0]->items += 0;' and 'hdrEmpty[0]->capacity += 0;'
	 *       after const_casting.
	 */
	static BlobHeader hdrEmpty[];

public:
	static const uint tail_reserve = 4; ///< four extra bytes will be always allocated and zeroed at the end
	static const uint header_size = sizeof(BlobHeader);

	/** default constructor - initializes empty blob */
	FORCEINLINE ByteBlob() { InitEmpty(); }

	/** copy constructor */
	FORCEINLINE ByteBlob(const ByteBlob &src) {
		InitEmpty();
		AppendRaw(src);
	}

	/** move constructor - take ownership of blob data */
	FORCEINLINE ByteBlob(BlobHeader * const & src)
	{
		assert(src != NULL);
		header = src;
		*const_cast<BlobHeader**>(&src) = NULL;
	}

	/** destructor */
	FORCEINLINE ~ByteBlob()
	{
		Free();
	}

protected:
	/** all allocation should happen here */
	static FORCEINLINE BlobHeader *RawAlloc(uint num_bytes)
	{
		return (BlobHeader*)MallocT<byte>(num_bytes);
	}

	/** Return header pointer to the static BlobHeader with
	 * both items and capacity containing zero */
	static FORCEINLINE BlobHeader *Zero()
	{
		return const_cast<BlobHeader *>(&ByteBlob::hdrEmpty[1]);
	}

	/** simple allocation policy - can be optimized later */
	static FORCEINLINE uint AllocPolicy(uint min_alloc)
	{
		if (min_alloc < (1 << 9)) {
			if (min_alloc < (1 << 5)) return (1 << 5);
			return (min_alloc < (1 << 7)) ? (1 << 7) : (1 << 9);
		}
		if (min_alloc < (1 << 15)) {
			if (min_alloc < (1 << 11)) return (1 << 11);
			return (min_alloc < (1 << 13)) ? (1 << 13) : (1 << 15);
		}
		if (min_alloc < (1 << 20)) {
			if (min_alloc < (1 << 17)) return (1 << 17);
			return (min_alloc < (1 << 19)) ? (1 << 19) : (1 << 20);
		}
		min_alloc = (min_alloc | ((1 << 20) - 1)) + 1;
		return min_alloc;
	}

	/** all deallocations should happen here */
	static FORCEINLINE void RawFree(BlobHeader *p)
	{
		/* Just to silence an unsilencable GCC 4.4+ warning. */
		assert(p != ByteBlob::hdrEmpty);

		/* In case GCC warns about the following, see GCC's PR38509 why it is bogus. */
		free(p);
	}

	/** initialize the empty blob */
	FORCEINLINE void InitEmpty()
	{
		header = Zero();
	}

	/** initialize blob by attaching it to the given header followed by data */
	FORCEINLINE void Init(BlobHeader *src)
	{
		header = &src[1];
	}

	/** blob header accessor - use it rather than using the pointer arithmetics directly - non-const version */
	FORCEINLINE BlobHeader& Hdr()
	{
		return *(header - 1);
	}

	/** blob header accessor - use it rather than using the pointer arithmetics directly - const version */
	FORCEINLINE const BlobHeader& Hdr() const
	{
		return *(header - 1);
	}

	/** return reference to the actual blob size - used when the size needs to be modified */
	FORCEINLINE uint& LengthRef()
	{
		return Hdr().items;
	};

public:
	/** return true if blob doesn't contain valid data */
	FORCEINLINE bool IsEmpty() const
	{
		return Length() == 0;
	}

	/** return the number of valid data bytes in the blob */
	FORCEINLINE uint Length() const
	{
		return Hdr().items;
	};

	/** return the current blob capacity in bytes */
	FORCEINLINE uint Capacity() const
	{
		return Hdr().capacity;
	};

	/** return pointer to the first byte of data - non-const version */
	FORCEINLINE byte *Begin()
	{
		return data;
	}

	/** return pointer to the first byte of data - const version */
	FORCEINLINE const byte *Begin() const
	{
		return data;
	}

	/** invalidate blob's data - doesn't free buffer */
	FORCEINLINE void Clear()
	{
		LengthRef() = 0;
	}

	/** free the blob's memory */
	FORCEINLINE void Free()
	{
		if (Capacity() > 0) {
			RawFree(&Hdr());
			InitEmpty();
		}
	}

	/** append new bytes at the end of existing data bytes - reallocates if necessary */
	FORCEINLINE void AppendRaw(const void *p, uint num_bytes)
	{
		assert(p != NULL);
		if (num_bytes > 0) {
			memcpy(Append(num_bytes), p, num_bytes);
		}
	}

	/** append bytes from given source blob to the end of existing data bytes - reallocates if necessary */
	FORCEINLINE void AppendRaw(const ByteBlob& src)
	{
		if (!src.IsEmpty()) {
			memcpy(Append(src.Length()), src.Begin(), src.Length());
		}
	}

	/** Reallocate if there is no free space for num_bytes bytes.
	 *  @return pointer to the new data to be added */
	FORCEINLINE byte *Prepare(uint num_bytes)
	{
		uint new_size = Length() + num_bytes;
		if (new_size > Capacity()) SmartAlloc(new_size);
		return data + Length();
	}

	/** Increase Length() by num_bytes.
	 *  @return pointer to the new data added */
	FORCEINLINE byte *Append(uint num_bytes)
	{
		byte *pNewData = Prepare(num_bytes);
		LengthRef() += num_bytes;
		return pNewData;
	}

	/** reallocate blob data if needed */
	void SmartAlloc(uint new_size)
	{
		if (Capacity() >= new_size) return;
		/* calculate minimum block size we need to allocate
		 * and ask allocation policy for some reasonable block size */
		new_size = AllocPolicy(header_size + new_size + tail_reserve);

		/* allocate new block and setup header */
		BlobHeader *tmp = RawAlloc(new_size);
		tmp->items = Length();
		tmp->capacity = new_size - (header_size + tail_reserve);

		/* copy existing data */
		if (tmp->items != 0)
			memcpy(tmp + 1, data, tmp->items);

		/* replace our block with new one */
		if (Capacity() > 0)
			RawFree(&Hdr());
		Init(tmp);
	}

	/** fixing the four bytes at the end of blob data - useful when blob is used to hold string */
	FORCEINLINE void FixTail() const
	{
		if (Capacity() > 0) {
			byte *p = &data[Length()];
			for (uint i = 0; i < tail_reserve; i++) {
				p[i] = 0;
			}
		}
	}
};

/** Blob - simple dynamic T array. T (template argument) is a placeholder for any type.
 *  T can be any integral type, pointer, or structure. Using Blob instead of just plain C array
 *  simplifies the resource management in several ways:
 *  1. When adding new item(s) it automatically grows capacity if needed.
 *  2. When variable of type Blob comes out of scope it automatically frees the data buffer.
 *  3. Takes care about the actual data size (number of used items).
 *  4. Dynamically constructs only used items (as opposite of static array which constructs all items) */
template <typename T>
class CBlobT : public ByteBlob {
	/* make template arguments public: */
public:
	typedef ByteBlob base;

	static const uint type_size = sizeof(T);

	struct OnTransfer {
		typename base::BlobHeader *header;
		OnTransfer(const OnTransfer& src) : header(src.header) {assert(src.header != NULL); *const_cast<typename base::BlobHeader**>(&src.header) = NULL;}
		OnTransfer(CBlobT& src) : header(src.header) {src.InitEmpty();}
		~OnTransfer() {assert(header == NULL);}
	};

	/** Default constructor - makes new Blob ready to accept any data */
	FORCEINLINE CBlobT()
		: base()
	{}

	/** Take ownership constructor */
	FORCEINLINE CBlobT(const OnTransfer& ot)
		: base(ot.header)
	{}

	/** Destructor - ensures that allocated memory (if any) is freed */
	FORCEINLINE ~CBlobT()
	{
		Free();
	}

	/** Check the validity of item index (only in debug mode) */
	FORCEINLINE void CheckIdx(uint index) const
	{
		assert(index < Size());
	}

	/** Return pointer to the first data item - non-const version */
	FORCEINLINE T *Data()
	{
		return (T*)base::Begin();
	}

	/** Return pointer to the first data item - const version */
	FORCEINLINE const T *Data() const
	{
		return (const T*)base::Begin();
	}

	/** Return pointer to the index-th data item - non-const version */
	FORCEINLINE T *Data(uint index)
	{
		CheckIdx(index);
		return (Data() + index);
	}

	/** Return pointer to the index-th data item - const version */
	FORCEINLINE const T *Data(uint index) const
	{
		CheckIdx(index);
		return (Data() + index);
	}

	/** Return number of items in the Blob */
	FORCEINLINE uint Size() const
	{
		return (base::Length() / type_size);
	}

	/** Return total number of items that can fit in the Blob without buffer reallocation */
	FORCEINLINE uint MaxSize() const
	{
		return (base::Capacity() / type_size);
	}

	/** Return number of additional items that can fit in the Blob without buffer reallocation */
	FORCEINLINE uint GetReserve() const
	{
		return ((base::Capacity() - base::Length()) / type_size);
	}

	/** Grow number of data items in Blob by given number - doesn't construct items */
	FORCEINLINE T *GrowSizeNC(uint num_items)
	{
		return (T*)base::Append(num_items * type_size);
	}

	/** Ensures that given number of items can be added to the end of Blob. Returns pointer to the
	 *  first free (unused) item */
	FORCEINLINE T *MakeFreeSpace(uint num_items)
	{
		return (T*)base::Prepare(num_items * type_size);
	}

	FORCEINLINE OnTransfer Transfer()
	{
		return OnTransfer(*this);
	};
};


#endif /* BLOB_HPP */