Files @ r24848:4573f310a629
Branch filter:

Location: cpp/openttd-patchpack/source/src/blitter/32bpp_optimized.cpp

Patric Stout
Codechange: [Win32] make fast-forward check the same as with other drivers

It was of all the drivers the only one doing this slightly different.
When trying to unify more code, that was rather annoying.
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file 32bpp_optimized.cpp Implementation of the optimized 32 bpp blitter. */

#include "../stdafx.h"
#include "../zoom_func.h"
#include "../settings_type.h"
#include "32bpp_optimized.hpp"

#include "../safeguards.h"

/** Instantiation of the optimized 32bpp blitter factory. */
static FBlitter_32bppOptimized iFBlitter_32bppOptimized;

/**
 * Draws a sprite to a (screen) buffer. It is templated to allow faster operation.
 *
 * @tparam mode blitter mode
 * @param bp further blitting parameters
 * @param zoom zoom level at which we are drawing
 */
template <BlitterMode mode>
inline void Blitter_32bppOptimized::Draw(const Blitter::BlitterParams *bp, ZoomLevel zoom)
{
	const SpriteData *src = (const SpriteData *)bp->sprite;

	/* src_px : each line begins with uint32 n = 'number of bytes in this line',
	 *          then n times is the Colour struct for this line */
	const Colour *src_px = (const Colour *)(src->data + src->offset[zoom][0]);
	/* src_n  : each line begins with uint32 n = 'number of bytes in this line',
	 *          then interleaved stream of 'm' and 'n' channels. 'm' is remap,
	 *          'n' is number of bytes with the same alpha channel class */
	const uint16 *src_n  = (const uint16 *)(src->data + src->offset[zoom][1]);

	/* skip upper lines in src_px and src_n */
	for (uint i = bp->skip_top; i != 0; i--) {
		src_px = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
		src_n = (const uint16 *)((const byte *)src_n + *(const uint32 *)src_n);
	}

	/* skip lines in dst */
	Colour *dst = (Colour *)bp->dst + bp->top * bp->pitch + bp->left;

	/* store so we don't have to access it via bp every time (compiler assumes pointer aliasing) */
	const byte *remap = bp->remap;

	for (int y = 0; y < bp->height; y++) {
		/* next dst line begins here */
		Colour *dst_ln = dst + bp->pitch;

		/* next src line begins here */
		const Colour *src_px_ln = (const Colour *)((const byte *)src_px + *(const uint32 *)src_px);
		src_px++;

		/* next src_n line begins here */
		const uint16 *src_n_ln = (const uint16 *)((const byte *)src_n + *(const uint32 *)src_n);
		src_n += 2;

		/* we will end this line when we reach this point */
		Colour *dst_end = dst + bp->skip_left;

		/* number of pixels with the same alpha channel class */
		uint n;

		while (dst < dst_end) {
			n = *src_n++;

			if (src_px->a == 0) {
				dst += n;
				src_px ++;
				src_n++;
			} else {
				if (dst + n > dst_end) {
					uint d = dst_end - dst;
					src_px += d;
					src_n += d;

					dst = dst_end - bp->skip_left;
					dst_end = dst + bp->width;

					n = std::min(n - d, (uint)bp->width);
					goto draw;
				}
				dst += n;
				src_px += n;
				src_n += n;
			}
		}

		dst -= bp->skip_left;
		dst_end -= bp->skip_left;

		dst_end += bp->width;

		while (dst < dst_end) {
			n = std::min<uint>(*src_n++, dst_end - dst);

			if (src_px->a == 0) {
				dst += n;
				src_px++;
				src_n++;
				continue;
			}

			draw:;

			switch (mode) {
				case BM_COLOUR_REMAP:
					if (src_px->a == 255) {
						do {
							uint m = *src_n;
							/* In case the m-channel is zero, do not remap this pixel in any way */
							if (m == 0) {
								*dst = src_px->data;
							} else {
								uint r = remap[GB(m, 0, 8)];
								if (r != 0) *dst = this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8));
							}
							dst++;
							src_px++;
							src_n++;
						} while (--n != 0);
					} else {
						do {
							uint m = *src_n;
							if (m == 0) {
								*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
							} else {
								uint r = remap[GB(m, 0, 8)];
								if (r != 0) *dst = ComposeColourPANoCheck(this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8)), src_px->a, *dst);
							}
							dst++;
							src_px++;
							src_n++;
						} while (--n != 0);
					}
					break;

				case BM_CRASH_REMAP:
					if (src_px->a == 255) {
						do {
							uint m = *src_n;
							if (m == 0) {
								uint8 g = MakeDark(src_px->r, src_px->g, src_px->b);
								*dst = ComposeColourRGBA(g, g, g, src_px->a, *dst);
							} else {
								uint r = remap[GB(m, 0, 8)];
								if (r != 0) *dst = this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8));
							}
							dst++;
							src_px++;
							src_n++;
						} while (--n != 0);
					} else {
						do {
							uint m = *src_n;
							if (m == 0) {
								if (src_px->a != 0) {
									uint8 g = MakeDark(src_px->r, src_px->g, src_px->b);
									*dst = ComposeColourRGBA(g, g, g, src_px->a, *dst);
								}
							} else {
								uint r = remap[GB(m, 0, 8)];
								if (r != 0) *dst = ComposeColourPANoCheck(this->AdjustBrightness(this->LookupColourInPalette(r), GB(m, 8, 8)), src_px->a, *dst);
							}
							dst++;
							src_px++;
							src_n++;
						} while (--n != 0);
					}
					break;

				case BM_BLACK_REMAP:
					do {
						*dst = Colour(0, 0, 0);
						dst++;
						src_px++;
						src_n++;
					} while (--n != 0);
					break;

				case BM_TRANSPARENT:
					/* TODO -- We make an assumption here that the remap in fact is transparency, not some colour.
					 *  This is never a problem with the code we produce, but newgrfs can make it fail... or at least:
					 *  we produce a result the newgrf maker didn't expect ;) */

					/* Make the current colour a bit more black, so it looks like this image is transparent */
					src_n += n;
					if (src_px->a == 255) {
						src_px += n;
						do {
							*dst = MakeTransparent(*dst, 3, 4);
							dst++;
						} while (--n != 0);
					} else {
						do {
							*dst = MakeTransparent(*dst, (256 * 4 - src_px->a), 256 * 4);
							dst++;
							src_px++;
						} while (--n != 0);
					}
					break;

				default:
					if (src_px->a == 255) {
						/* faster than memcpy(), n is usually low */
						src_n += n;
						do {
							*dst = src_px->data;
							dst++;
							src_px++;
						} while (--n != 0);
					} else {
						src_n += n;
						do {
							*dst = ComposeColourRGBANoCheck(src_px->r, src_px->g, src_px->b, src_px->a, *dst);
							dst++;
							src_px++;
						} while (--n != 0);
					}
					break;
			}
		}

		dst = dst_ln;
		src_px = src_px_ln;
		src_n  = src_n_ln;
	}
}

/**
 * Draws a sprite to a (screen) buffer. Calls adequate templated function.
 *
 * @param bp further blitting parameters
 * @param mode blitter mode
 * @param zoom zoom level at which we are drawing
 */
void Blitter_32bppOptimized::Draw(Blitter::BlitterParams *bp, BlitterMode mode, ZoomLevel zoom)
{
	switch (mode) {
		default: NOT_REACHED();
		case BM_NORMAL:       Draw<BM_NORMAL>      (bp, zoom); return;
		case BM_COLOUR_REMAP: Draw<BM_COLOUR_REMAP>(bp, zoom); return;
		case BM_TRANSPARENT:  Draw<BM_TRANSPARENT> (bp, zoom); return;
		case BM_CRASH_REMAP:  Draw<BM_CRASH_REMAP> (bp, zoom); return;
		case BM_BLACK_REMAP:  Draw<BM_BLACK_REMAP> (bp, zoom); return;
	}
}

Sprite *Blitter_32bppOptimized::Encode(const SpriteLoader::Sprite *sprite, AllocatorProc *allocator)
{
	/* streams of pixels (a, r, g, b channels)
	 *
	 * stored in separated stream so data are always aligned on 4B boundary */
	Colour *dst_px_orig[ZOOM_LVL_COUNT];

	/* interleaved stream of 'm' channel and 'n' channel
	 * 'n' is number of following pixels with the same alpha channel class
	 * there are 3 classes: 0, 255, others
	 *
	 * it has to be stored in one stream so fewer registers are used -
	 * x86 has problems with register allocation even with this solution */
	uint16 *dst_n_orig[ZOOM_LVL_COUNT];

	/* lengths of streams */
	uint32 lengths[ZOOM_LVL_COUNT][2];

	ZoomLevel zoom_min;
	ZoomLevel zoom_max;

	if (sprite->type == ST_FONT) {
		zoom_min = ZOOM_LVL_NORMAL;
		zoom_max = ZOOM_LVL_NORMAL;
	} else {
		zoom_min = _settings_client.gui.zoom_min;
		zoom_max = _settings_client.gui.zoom_max;
		if (zoom_max == zoom_min) zoom_max = ZOOM_LVL_MAX;
	}

	for (ZoomLevel z = zoom_min; z <= zoom_max; z++) {
		const SpriteLoader::Sprite *src_orig = &sprite[z];

		uint size = src_orig->height * src_orig->width;

		dst_px_orig[z] = CallocT<Colour>(size + src_orig->height * 2);
		dst_n_orig[z]  = CallocT<uint16>(size * 2 + src_orig->height * 4 * 2);

		uint32 *dst_px_ln = (uint32 *)dst_px_orig[z];
		uint32 *dst_n_ln  = (uint32 *)dst_n_orig[z];

		const SpriteLoader::CommonPixel *src = (const SpriteLoader::CommonPixel *)src_orig->data;

		for (uint y = src_orig->height; y > 0; y--) {
			Colour *dst_px = (Colour *)(dst_px_ln + 1);
			uint16 *dst_n = (uint16 *)(dst_n_ln + 1);

			uint16 *dst_len = dst_n++;

			uint last = 3;
			int len = 0;

			for (uint x = src_orig->width; x > 0; x--) {
				uint8 a = src->a;
				uint t = a > 0 && a < 255 ? 1 : a;

				if (last != t || len == 65535) {
					if (last != 3) {
						*dst_len = len;
						dst_len = dst_n++;
					}
					len = 0;
				}

				last = t;
				len++;

				if (a != 0) {
					dst_px->a = a;
					*dst_n = src->m;
					if (src->m != 0) {
						/* Get brightest value */
						uint8 rgb_max = std::max({src->r, src->g, src->b});

						/* Black pixel (8bpp or old 32bpp image), so use default value */
						if (rgb_max == 0) rgb_max = DEFAULT_BRIGHTNESS;
						*dst_n |= rgb_max << 8;

						/* Pre-convert the mapping channel to a RGB value */
						Colour colour = this->AdjustBrightness(this->LookupColourInPalette(src->m), rgb_max);
						dst_px->r = colour.r;
						dst_px->g = colour.g;
						dst_px->b = colour.b;
					} else {
						dst_px->r = src->r;
						dst_px->g = src->g;
						dst_px->b = src->b;
					}
					dst_px++;
					dst_n++;
				} else if (len == 1) {
					dst_px++;
					*dst_n = src->m;
					dst_n++;
				}

				src++;
			}

			if (last != 3) {
				*dst_len = len;
			}

			dst_px = (Colour *)AlignPtr(dst_px, 4);
			dst_n  = (uint16 *)AlignPtr(dst_n, 4);

			*dst_px_ln = (uint8 *)dst_px - (uint8 *)dst_px_ln;
			*dst_n_ln  = (uint8 *)dst_n  - (uint8 *)dst_n_ln;

			dst_px_ln = (uint32 *)dst_px;
			dst_n_ln =  (uint32 *)dst_n;
		}

		lengths[z][0] = (byte *)dst_px_ln - (byte *)dst_px_orig[z]; // all are aligned to 4B boundary
		lengths[z][1] = (byte *)dst_n_ln  - (byte *)dst_n_orig[z];
	}

	uint len = 0; // total length of data
	for (ZoomLevel z = zoom_min; z <= zoom_max; z++) {
		len += lengths[z][0] + lengths[z][1];
	}

	Sprite *dest_sprite = (Sprite *)allocator(sizeof(*dest_sprite) + sizeof(SpriteData) + len);

	dest_sprite->height = sprite->height;
	dest_sprite->width  = sprite->width;
	dest_sprite->x_offs = sprite->x_offs;
	dest_sprite->y_offs = sprite->y_offs;

	SpriteData *dst = (SpriteData *)dest_sprite->data;
	memset(dst, 0, sizeof(*dst));

	for (ZoomLevel z = zoom_min; z <= zoom_max; z++) {
		dst->offset[z][0] = z == zoom_min ? 0 : lengths[z - 1][1] + dst->offset[z - 1][1];
		dst->offset[z][1] = lengths[z][0] + dst->offset[z][0];

		memcpy(dst->data + dst->offset[z][0], dst_px_orig[z], lengths[z][0]);
		memcpy(dst->data + dst->offset[z][1], dst_n_orig[z],  lengths[z][1]);

		free(dst_px_orig[z]);
		free(dst_n_orig[z]);
	}

	return dest_sprite;
}