Files @ r28356:5479dee3539c
Branch filter:

Location: cpp/openttd-patchpack/source/src/tgp.cpp - annotation

Patric Stout
Fix: [CI] patch in SHF_COMPRESSED symbol for our Linux Generic binaries (#11651)
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r12768:980ae0491352
r6422:5983361e241a
r6422:5983361e241a
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r8131:7a50db7be0ff
r10960:e97ebf9cf99b
r8264:d493cb51fe8a
r21383:942c32fb8b0e
r21383:942c32fb8b0e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r16339:e90c1dadabf0
r16339:e90c1dadabf0
r5584:545d748cc681
r5584:545d748cc681
r27737:728d55b97775
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r23169:8dfe8bbac8df
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r19604:b2796fd9d433
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r19604:b2796fd9d433
r19604:b2796fd9d433
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r19604:b2796fd9d433
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r19604:b2796fd9d433
r19604:b2796fd9d433
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27737:728d55b97775
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r6248:b940b09d7ab8
r5584:545d748cc681
r27140:3ee6e1b41e6e
r21845:93c59d31b0cc
r21845:93c59d31b0cc
r26787:a51c38e4aac5
r26787:a51c38e4aac5
r26787:a51c38e4aac5
r9603:317cd54d5ce8
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r27140:3ee6e1b41e6e
r13175:ef1f91f8caa1
r9603:317cd54d5ce8
r9603:317cd54d5ce8
r6248:b940b09d7ab8
r5584:545d748cc681
r5584:545d748cc681
r25782:7c2373337828
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5587:034e5e185dc2
r5587:034e5e185dc2
r21855:187f218a4960
r21856:1f176774ef7d
r9615:cdd7bc4b047b
r9413:fcf267325763
r27140:3ee6e1b41e6e
r5584:545d748cc681
r21846:6a2563a3b175
r21846:6a2563a3b175
r21846:6a2563a3b175
r21846:6a2563a3b175
r22066:b31eb9495ef1
r21846:6a2563a3b175
r27140:3ee6e1b41e6e
r21846:6a2563a3b175
r25082:dba738c5114f
r25082:dba738c5114f
r25082:dba738c5114f
r25082:dba738c5114f
r25082:dba738c5114f
r25082:dba738c5114f
r25082:dba738c5114f
r21846:6a2563a3b175
r21846:6a2563a3b175
r21846:6a2563a3b175
r26787:a51c38e4aac5
r21846:6a2563a3b175
r21846:6a2563a3b175
r21846:6a2563a3b175
r21846:6a2563a3b175
r21846:6a2563a3b175
r21846:6a2563a3b175
r21857:1dd36c5b9a2c
r21846:6a2563a3b175
r22066:b31eb9495ef1
r22066:b31eb9495ef1
r22066:b31eb9495ef1
r22066:b31eb9495ef1
r22066:b31eb9495ef1
r21846:6a2563a3b175
r21846:6a2563a3b175
r26787:a51c38e4aac5
r24603:8ece92afa18e
r25079:09d645764ffe
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r25080:d4c9906d70aa
r21846:6a2563a3b175
r5584:545d748cc681
r15610:623a23fb6560
r21854:3055e5154c57
r21854:3055e5154c57
r21854:3055e5154c57
r21854:3055e5154c57
r21854:3055e5154c57
r27140:3ee6e1b41e6e
r21854:3055e5154c57
r22161:f1f4443e06bf
r27140:3ee6e1b41e6e
r21854:3055e5154c57
r22161:f1f4443e06bf
r22161:f1f4443e06bf
r22161:f1f4443e06bf
r22161:f1f4443e06bf
r21854:3055e5154c57
r22161:f1f4443e06bf
r22161:f1f4443e06bf
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r23169:8dfe8bbac8df
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21854:3055e5154c57
r21854:3055e5154c57
r21856:1f176774ef7d
r22161:f1f4443e06bf
r22161:f1f4443e06bf
r27140:3ee6e1b41e6e
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21866:bde0469f0745
r21856:1f176774ef7d
r27140:3ee6e1b41e6e
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21856:1f176774ef7d
r21854:3055e5154c57
r21854:3055e5154c57
r21854:3055e5154c57
r15610:623a23fb6560
r6422:5983361e241a
r6422:5983361e241a
r6422:5983361e241a
r6422:5983361e241a
r21845:93c59d31b0cc
r5584:545d748cc681
r21845:93c59d31b0cc
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r6247:96e840dbefcc
r5584:545d748cc681
r25782:7c2373337828
r5584:545d748cc681
r26787:a51c38e4aac5
r26787:a51c38e4aac5
r5584:545d748cc681
r5584:545d748cc681
r26711:a4f8e9c41dea
r5584:545d748cc681
r25782:7c2373337828
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r6247:96e840dbefcc
r5584:545d748cc681
r25782:7c2373337828
r5584:545d748cc681
r5584:545d748cc681
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r9613:f653db457735
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r21793:27170047e8bb
r5584:545d748cc681
r5584:545d748cc681
r9613:f653db457735
r21792:d53b678b97ad
r9613:f653db457735
r21792:d53b678b97ad
r21855:187f218a4960
r21855:187f218a4960
r9613:f653db457735
r21792:d53b678b97ad
r5584:545d748cc681
r9613:f653db457735
r25782:7c2373337828
r5584:545d748cc681
r26787:a51c38e4aac5
r21866:bde0469f0745
r21855:187f218a4960
r21855:187f218a4960
r27140:3ee6e1b41e6e
r21866:bde0469f0745
r21866:bde0469f0745
r21866:bde0469f0745
r21866:bde0469f0745
r21866:bde0469f0745
r21855:187f218a4960
r5584:545d748cc681
r21866:bde0469f0745
r21792:d53b678b97ad
r21845:93c59d31b0cc
r21845:93c59d31b0cc
r27140:3ee6e1b41e6e
r21792:d53b678b97ad
r21792:d53b678b97ad
r21792:d53b678b97ad
r21866:bde0469f0745
r21792:d53b678b97ad
r21792:d53b678b97ad
r21792:d53b678b97ad
r21792:d53b678b97ad
r21851:d6e7af1973e0
r21845:93c59d31b0cc
r21845:93c59d31b0cc
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r21792:d53b678b97ad
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r21792:d53b678b97ad
r21845:93c59d31b0cc
r21845:93c59d31b0cc
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r21792:d53b678b97ad
r21792:d53b678b97ad
r5584:545d748cc681
r5584:545d748cc681
r21792:d53b678b97ad
r21845:93c59d31b0cc
r21845:93c59d31b0cc
r21792:d53b678b97ad
r21792:d53b678b97ad
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r27140:3ee6e1b41e6e
r27737:728d55b97775
r9603:317cd54d5ce8
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r25782:7c2373337828
r25782:7c2373337828
r25782:7c2373337828
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r23607:36c15679007d
r23607:36c15679007d
r23607:36c15679007d
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27942:f7389062d120
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r9613:f653db457735
r27140:3ee6e1b41e6e
r25782:7c2373337828
r25782:7c2373337828
r25782:7c2373337828
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r25782:7c2373337828
r5584:545d748cc681
r5584:545d748cc681
r25782:7c2373337828
r5584:545d748cc681
r12666:f45560c3fe4d
r6357:de4229337c35
r6357:de4229337c35
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r6357:de4229337c35
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r6357:de4229337c35
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r25782:7c2373337828
r25782:7c2373337828
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r21847:14f643b5baae
r21847:14f643b5baae
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r21847:14f643b5baae
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r27140:3ee6e1b41e6e
r21847:14f643b5baae
r21847:14f643b5baae
r27139:0ea78690aead
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r21847:14f643b5baae
r21847:14f643b5baae
r27140:3ee6e1b41e6e
r27139:0ea78690aead
r27139:0ea78690aead
r27139:0ea78690aead
r27139:0ea78690aead
r21847:14f643b5baae
r21847:14f643b5baae
r21847:14f643b5baae
r27139:0ea78690aead
r27139:0ea78690aead
r27139:0ea78690aead
r21847:14f643b5baae
r27139:0ea78690aead
r21847:14f643b5baae
r21847:14f643b5baae
r21847:14f643b5baae
r21847:14f643b5baae
r21847:14f643b5baae
r21847:14f643b5baae
r27140:3ee6e1b41e6e
r20982:80fc6219fb8b
r13989:72d505878586
r21800:f246d1c981f3
r21800:f246d1c981f3
r21801:786b543cdd7a
r21801:786b543cdd7a
r27093:c1262b95b024
r13989:72d505878586
r13989:72d505878586
r21847:14f643b5baae
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r21845:93c59d31b0cc
r13989:72d505878586
r13989:72d505878586
r21800:f246d1c981f3
r14013:7d16aa60bebd
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r21845:93c59d31b0cc
r13989:72d505878586
r13989:72d505878586
r21800:f246d1c981f3
r14013:7d16aa60bebd
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r27140:3ee6e1b41e6e
r13989:72d505878586
r22157:78a6c66530ed
r22157:78a6c66530ed
r22157:78a6c66530ed
r22157:78a6c66530ed
r22157:78a6c66530ed
r22157:78a6c66530ed
r13989:72d505878586
r21847:14f643b5baae
r13989:72d505878586
r13989:72d505878586
r25590:6544087fd869
r27139:0ea78690aead
r21847:14f643b5baae
r27139:0ea78690aead
r27139:0ea78690aead
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r25102:a957c7093816
r22155:cbc25c9e3037
r25096:a14fe58ce41a
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r22155:cbc25c9e3037
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r27140:3ee6e1b41e6e
r22157:78a6c66530ed
r22157:78a6c66530ed
r22157:78a6c66530ed
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r27140:3ee6e1b41e6e
r27737:728d55b97775
r5609:a56ae00a9125
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5609:a56ae00a9125
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27737:728d55b97775
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r21846:6a2563a3b175
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r25782:7c2373337828
r25782:7c2373337828
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r19604:b2796fd9d433
r19604:b2796fd9d433
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27737:728d55b97775
r5584:545d748cc681
r24597:afde5721a3b6
r5584:545d748cc681
r21845:93c59d31b0cc
r5587:034e5e185dc2
r5587:034e5e185dc2
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r24597:afde5721a3b6
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r24597:afde5721a3b6
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r24597:afde5721a3b6
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r24597:afde5721a3b6
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r21787:bd5b515cc62f
r5584:545d748cc681
r5584:545d748cc681
r9603:317cd54d5ce8
r5584:545d748cc681
r5584:545d748cc681
r9603:317cd54d5ce8
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r9603:317cd54d5ce8
r27268:0f3ade585831
r9603:317cd54d5ce8
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27737:728d55b97775
r5584:545d748cc681
r21845:93c59d31b0cc
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r27140:3ee6e1b41e6e
r5584:545d748cc681
r21794:cc0b37460ec6
r21794:cc0b37460ec6
r27140:3ee6e1b41e6e
r9603:317cd54d5ce8
r5584:545d748cc681
r5584:545d748cc681
r21794:cc0b37460ec6
r21794:cc0b37460ec6
r27140:3ee6e1b41e6e
r9603:317cd54d5ce8
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r15610:623a23fb6560
r15610:623a23fb6560
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r15613:193c12018337
r15613:193c12018337
r6247:96e840dbefcc
r5584:545d748cc681
r16126:3b43532e6039
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r27140:3ee6e1b41e6e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10877:d04796239c5e
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r22156:810d8ff71c2f
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r13989:72d505878586
r22156:810d8ff71c2f
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r9413:fcf267325763
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r15789:c3566de65d78
r15789:c3566de65d78
r15789:c3566de65d78
r15789:c3566de65d78
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r21794:cc0b37460ec6
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r9613:f653db457735
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r20804:394e50231d55
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r23169:8dfe8bbac8df
r5584:545d748cc681
r5584:545d748cc681
r6247:96e840dbefcc
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r26787:a51c38e4aac5
r26787:a51c38e4aac5
r10855:5a3c2f38f98e
r10855:5a3c2f38f98e
r21846:6a2563a3b175
r21787:bd5b515cc62f
r5584:545d748cc681
r21845:93c59d31b0cc
r21845:93c59d31b0cc
r21787:bd5b515cc62f
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r5584:545d748cc681
r23607:36c15679007d
r5584:545d748cc681
/*
 * This file is part of OpenTTD.
 * OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
 * OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
 */

/** @file tgp.cpp OTTD Perlin Noise Landscape Generator, aka TerraGenesis Perlin */

#include "stdafx.h"
#include "clear_map.h"
#include "void_map.h"
#include "genworld.h"
#include "core/random_func.hpp"
#include "landscape_type.h"

#include "safeguards.h"

/*
 *
 * Quickie guide to Perlin Noise
 * Perlin noise is a predictable pseudo random number sequence. By generating
 * it in 2 dimensions, it becomes a useful random map that, for a given seed
 * and starting X & Y, is entirely predictable. On the face of it, that may not
 * be useful. However, it means that if you want to replay a map in a different
 * terrain, or just vary the sea level, you just re-run the generator with the
 * same seed. The seed is an int32_t, and is randomised on each run of New Game.
 * The Scenario Generator does not randomise the value, so that you can
 * experiment with one terrain until you are happy, or click "Random" for a new
 * random seed.
 *
 * Perlin Noise is a series of "octaves" of random noise added together. By
 * reducing the amplitude of the noise with each octave, the first octave of
 * noise defines the main terrain sweep, the next the ripples on that, and the
 * next the ripples on that. I use 6 octaves, with the amplitude controlled by
 * a power ratio, usually known as a persistence or p value. This I vary by the
 * smoothness selection, as can be seen in the table below. The closer to 1,
 * the more of that octave is added. Each octave is however raised to the power
 * of its position in the list, so the last entry in the "smooth" row, 0.35, is
 * raised to the power of 6, so can only add 0.001838...  of the amplitude to
 * the running total.
 *
 * In other words; the first p value sets the general shape of the terrain, the
 * second sets the major variations to that, ... until finally the smallest
 * bumps are added.
 *
 * Usefully, this routine is totally scalable; so when 32bpp comes along, the
 * terrain can be as bumpy as you like! It is also infinitely expandable; a
 * single random seed terrain continues in X & Y as far as you care to
 * calculate. In theory, we could use just one seed value, but randomly select
 * where in the Perlin XY space we use for the terrain. Personally I prefer
 * using a simple (0, 0) to (X, Y), with a varying seed.
 *
 *
 * Other things i have had to do: mountainous wasn't mountainous enough, and
 * since we only have 0..15 heights available, I add a second generated map
 * (with a modified seed), onto the original. This generally raises the
 * terrain, which then needs scaling back down. Overall effect is a general
 * uplift.
 *
 * However, the values on the top of mountains are then almost guaranteed to go
 * too high, so large flat plateaus appeared at height 15. To counter this, I
 * scale all heights above 12 to proportion up to 15. It still makes the
 * mountains have flattish tops, rather than craggy peaks, but at least they
 * aren't smooth as glass.
 *
 *
 * For a full discussion of Perlin Noise, please visit:
 * http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
 *
 *
 * Evolution II
 *
 * The algorithm as described in the above link suggests to compute each tile height
 * as composition of several noise waves. Some of them are computed directly by
 * noise(x, y) function, some are calculated using linear approximation. Our
 * first implementation of perlin_noise_2D() used 4 noise(x, y) calls plus
 * 3 linear interpolations. It was called 6 times for each tile. This was a bit
 * CPU expensive.
 *
 * The following implementation uses optimized algorithm that should produce
 * the same quality result with much less computations, but more memory accesses.
 * The overall speedup should be 300% to 800% depending on CPU and memory speed.
 *
 * I will try to explain it on the example below:
 *
 * Have a map of 4 x 4 tiles, our simplified noise generator produces only two
 * values -1 and +1, use 3 octaves with wave length 1, 2 and 4, with amplitudes
 * 3, 2, 1. Original algorithm produces:
 *
 * h00 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 0/4) + lerp(lerp(-2,  2, 0/2), lerp( 2, -2, 0/2), 0/2) + -1 = lerp(-3.0,  3.0, 0/4) + lerp(-2,  2, 0/2) + -1 = -3.0  + -2 + -1 = -6.0
 * h01 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 0/4) + lerp(lerp(-2,  2, 1/2), lerp( 2, -2, 1/2), 0/2) +  1 = lerp(-1.5,  1.5, 0/4) + lerp( 0,  0, 0/2) +  1 = -1.5  +  0 +  1 = -0.5
 * h02 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 0/4) + lerp(lerp( 2, -2, 0/2), lerp(-2,  2, 0/2), 0/2) + -1 = lerp(   0,    0, 0/4) + lerp( 2, -2, 0/2) + -1 =    0  +  2 + -1 =  1.0
 * h03 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 0/4) + lerp(lerp( 2, -2, 1/2), lerp(-2,  2, 1/2), 0/2) +  1 = lerp( 1.5, -1.5, 0/4) + lerp( 0,  0, 0/2) +  1 =  1.5  +  0 +  1 =  2.5
 *
 * h10 = lerp(lerp(-3, 3, 0/4), lerp(3, -3, 0/4), 1/4) + lerp(lerp(-2,  2, 0/2), lerp( 2, -2, 0/2), 1/2) +  1 = lerp(-3.0,  3.0, 1/4) + lerp(-2,  2, 1/2) +  1 = -1.5  +  0 +  1 = -0.5
 * h11 = lerp(lerp(-3, 3, 1/4), lerp(3, -3, 1/4), 1/4) + lerp(lerp(-2,  2, 1/2), lerp( 2, -2, 1/2), 1/2) + -1 = lerp(-1.5,  1.5, 1/4) + lerp( 0,  0, 1/2) + -1 = -0.75 +  0 + -1 = -1.75
 * h12 = lerp(lerp(-3, 3, 2/4), lerp(3, -3, 2/4), 1/4) + lerp(lerp( 2, -2, 0/2), lerp(-2,  2, 0/2), 1/2) +  1 = lerp(   0,    0, 1/4) + lerp( 2, -2, 1/2) +  1 =    0  +  0 +  1 =  1.0
 * h13 = lerp(lerp(-3, 3, 3/4), lerp(3, -3, 3/4), 1/4) + lerp(lerp( 2, -2, 1/2), lerp(-2,  2, 1/2), 1/2) + -1 = lerp( 1.5, -1.5, 1/4) + lerp( 0,  0, 1/2) + -1 =  0.75 +  0 + -1 = -0.25
 *
 *
 * Optimization 1:
 *
 * 1) we need to allocate a bit more tiles: (size_x + 1) * (size_y + 1) = (5 * 5):
 *
 * 2) setup corner values using amplitude 3
 * {    -3.0        X          X          X          3.0   }
 * {     X          X          X          X          X     }
 * {     X          X          X          X          X     }
 * {     X          X          X          X          X     }
 * {     3.0        X          X          X         -3.0   }
 *
 * 3a) interpolate values in the middle
 * {    -3.0        X          0.0        X          3.0   }
 * {     X          X          X          X          X     }
 * {     0.0        X          0.0        X          0.0   }
 * {     X          X          X          X          X     }
 * {     3.0        X          0.0        X         -3.0   }
 *
 * 3b) add patches with amplitude 2 to them
 * {    -5.0        X          2.0        X          1.0   }
 * {     X          X          X          X          X     }
 * {     2.0        X         -2.0        X          2.0   }
 * {     X          X          X          X          X     }
 * {     1.0        X          2.0        X         -5.0   }
 *
 * 4a) interpolate values in the middle
 * {    -5.0       -1.5        2.0        1.5        1.0   }
 * {    -1.5       -0.75       0.0        0.75       1.5   }
 * {     2.0        0.0       -2.0        0.0        2.0   }
 * {     1.5        0.75       0.0       -0.75      -1.5   }
 * {     1.0        1.5        2.0       -1.5       -5.0   }
 *
 * 4b) add patches with amplitude 1 to them
 * {    -6.0       -0.5        1.0        2.5        0.0   }
 * {    -0.5       -1.75       1.0       -0.25       2.5   }
 * {     1.0        1.0       -3.0        1.0        1.0   }
 * {     2.5       -0.25       1.0       -1.75      -0.5   }
 * {     0.0        2.5        1.0       -0.5       -6.0   }
 *
 *
 *
 * Optimization 2:
 *
 * As you can see above, each noise function was called just once. Therefore
 * we don't need to use noise function that calculates the noise from x, y and
 * some prime. The same quality result we can obtain using standard Random()
 * function instead.
 *
 */

/** Fixed point type for heights */
using Height = int16_t;
static const int height_decimal_bits = 4;

/** Fixed point array for amplitudes (and percent values) */
using Amplitude = int;
static const int amplitude_decimal_bits = 10;

/** Height map - allocated array of heights (MapSizeX() + 1) x (MapSizeY() + 1) */
struct HeightMap
{
	std::vector<Height> h; //< array of heights
	/* Even though the sizes are always positive, there are many cases where
	 * X and Y need to be signed integers due to subtractions. */
	int      dim_x;      //< height map size_x Map::SizeX() + 1
	int      size_x;     //< Map::SizeX()
	int      size_y;     //< Map::SizeY()

	/**
	 * Height map accessor
	 * @param x X position
	 * @param y Y position
	 * @return height as fixed point number
	 */
	inline Height &height(uint x, uint y)
	{
		return h[x + y * dim_x];
	}
};

/** Global height map instance */
static HeightMap _height_map = { {}, 0, 0, 0 };

/** Conversion: int to Height */
#define I2H(i) ((i) << height_decimal_bits)
/** Conversion: Height to int */
#define H2I(i) ((i) >> height_decimal_bits)

/** Conversion: int to Amplitude */
#define I2A(i) ((i) << amplitude_decimal_bits)
/** Conversion: Amplitude to int */
#define A2I(i) ((i) >> amplitude_decimal_bits)

/** Conversion: Amplitude to Height */
#define A2H(a) ((a) >> (amplitude_decimal_bits - height_decimal_bits))

/** Maximum number of TGP noise frequencies. */
static const int MAX_TGP_FREQUENCIES = 10;

/** Desired water percentage (100% == 1024) - indexed by _settings_game.difficulty.quantity_sea_lakes */
static const Amplitude _water_percent[4] = {70, 170, 270, 420};

/**
 * Gets the maximum allowed height while generating a map based on
 * mapsize, terraintype, and the maximum height level.
 * @return The maximum height for the map generation.
 * @note Values should never be lower than 3 since the minimum snowline height is 2.
 */
static Height TGPGetMaxHeight()
{
	if (_settings_game.difficulty.terrain_type == CUSTOM_TERRAIN_TYPE_NUMBER_DIFFICULTY) {
		/* TGP never reaches this height; this means that if a user inputs "2",
		 * it would create a flat map without the "+ 1". But that would
		 * overflow on "255". So we reduce it by 1 to get back in range. */
		return I2H(_settings_game.game_creation.custom_terrain_type + 1) - 1;
	}

	/**
	 * Desired maximum height - indexed by:
	 *  - _settings_game.difficulty.terrain_type
	 *  - min(Map::LogX(), Map::LogY()) - MIN_MAP_SIZE_BITS
	 *
	 * It is indexed by map size as well as terrain type since the map size limits the height of
	 * a usable mountain. For example, on a 64x64 map a 24 high single peak mountain (as if you
	 * raised land 24 times in the center of the map) will leave only a ring of about 10 tiles
	 * around the mountain to build on. On a 4096x4096 map, it won't cover any major part of the map.
	 */
	static const int max_height[5][MAX_MAP_SIZE_BITS - MIN_MAP_SIZE_BITS + 1] = {
		/* 64  128  256  512 1024 2048 4096 */
		{   3,   3,   3,   3,   4,   5,   7 }, ///< Very flat
		{   5,   7,   8,   9,  14,  19,  31 }, ///< Flat
		{   8,   9,  10,  15,  23,  37,  61 }, ///< Hilly
		{  10,  11,  17,  19,  49,  63,  73 }, ///< Mountainous
		{  12,  19,  25,  31,  67,  75,  87 }, ///< Alpinist
	};

	int map_size_bucket = std::min(Map::LogX(), Map::LogY()) - MIN_MAP_SIZE_BITS;
	int max_height_from_table = max_height[_settings_game.difficulty.terrain_type][map_size_bucket];

	/* If there is a manual map height limit, clamp to it. */
	if (_settings_game.construction.map_height_limit != 0) {
		max_height_from_table = std::min<uint>(max_height_from_table, _settings_game.construction.map_height_limit);
	}

	return I2H(max_height_from_table);
}

/**
 * Get an overestimation of the highest peak TGP wants to generate.
 */
uint GetEstimationTGPMapHeight()
{
	return H2I(TGPGetMaxHeight());
}

/**
 * Get the amplitude associated with the currently selected
 * smoothness and maximum height level.
 * @param frequency The frequency to get the amplitudes for
 * @return The amplitudes to apply to the map.
 */
static Amplitude GetAmplitude(int frequency)
{
	/* Base noise amplitudes (multiplied by 1024) and indexed by "smoothness setting" and log2(frequency). */
	static const Amplitude amplitudes[][7] = {
		/* lowest frequency ...... highest (every corner) */
		{16000,  5600,  1968,   688,   240,    16,    16}, ///< Very smooth
		{24000, 12800,  6400,  2700,  1024,   128,    16}, ///< Smooth
		{32000, 19200, 12800,  8000,  3200,   256,    64}, ///< Rough
		{48000, 24000, 19200, 16000,  8000,   512,   320}, ///< Very rough
	};
	/*
	 * Extrapolation factors for ranges before the table.
	 * The extrapolation is needed to account for the higher map heights. They need larger
	 * areas with a particular gradient so that we are able to create maps without too
	 * many steep slopes up to the wanted height level. It's definitely not perfect since
	 * it will bring larger rectangles with similar slopes which makes the rectangular
	 * behaviour of TGP more noticeable. However, these height differentiations cannot
	 * happen over much smaller areas; we basically double the "range" to give a similar
	 * slope for every doubling of map height.
	 */
	static const double extrapolation_factors[] = { 3.3, 2.8, 2.3, 1.8 };

	int smoothness = _settings_game.game_creation.tgen_smoothness;

	/* Get the table index, and return that value if possible. */
	int index = frequency - MAX_TGP_FREQUENCIES + lengthof(amplitudes[smoothness]);
	Amplitude amplitude = amplitudes[smoothness][std::max(0, index)];
	if (index >= 0) return amplitude;

	/* We need to extrapolate the amplitude. */
	double extrapolation_factor = extrapolation_factors[smoothness];
	int height_range = I2H(16);
	do {
		amplitude = (Amplitude)(extrapolation_factor * (double)amplitude);
		height_range <<= 1;
		index++;
	} while (index < 0);

	return Clamp((TGPGetMaxHeight() - height_range) / height_range, 0, 1) * amplitude;
}

/**
 * Check if a X/Y set are within the map.
 * @param x coordinate x
 * @param y coordinate y
 * @return true if within the map
 */
static inline bool IsValidXY(int x, int y)
{
	return x >= 0 && x < _height_map.size_x && y >= 0 && y < _height_map.size_y;
}


/**
 * Allocate array of (MapSizeX()+1)*(MapSizeY()+1) heights and init the _height_map structure members
 * @return true on success
 */
static inline bool AllocHeightMap()
{
	assert(_height_map.h.empty());

	_height_map.size_x = Map::SizeX();
	_height_map.size_y = Map::SizeY();

	/* Allocate memory block for height map row pointers */
	size_t total_size = static_cast<size_t>(_height_map.size_x + 1) * (_height_map.size_y + 1);
	_height_map.dim_x = _height_map.size_x + 1;
	_height_map.h.resize(total_size);

	return true;
}

/** Free height map */
static inline void FreeHeightMap()
{
	_height_map.h.clear();
}

/**
 * Generates new random height in given amplitude (generated numbers will range from - amplitude to + amplitude)
 * @param rMax Limit of result
 * @return generated height
 */
static inline Height RandomHeight(Amplitude rMax)
{
	/* Spread height into range -rMax..+rMax */
	return A2H(RandomRange(2 * rMax + 1) - rMax);
}

/**
 * Base Perlin noise generator - fills height map with raw Perlin noise.
 *
 * This runs several iterations with increasing precision; the last iteration looks at areas
 * of 1 by 1 tiles, the second to last at 2 by 2 tiles and the initial 2**MAX_TGP_FREQUENCIES
 * by 2**MAX_TGP_FREQUENCIES tiles.
 */
static void HeightMapGenerate()
{
	/* Trying to apply noise to uninitialized height map */
	assert(!_height_map.h.empty());

	int start = std::max(MAX_TGP_FREQUENCIES - (int)std::min(Map::LogX(), Map::LogY()), 0);
	bool first = true;

	for (int frequency = start; frequency < MAX_TGP_FREQUENCIES; frequency++) {
		const Amplitude amplitude = GetAmplitude(frequency);

		/* Ignore zero amplitudes; it means our map isn't height enough for this
		 * amplitude, so ignore it and continue with the next set of amplitude. */
		if (amplitude == 0) continue;

		const int step = 1 << (MAX_TGP_FREQUENCIES - frequency - 1);

		if (first) {
			/* This is first round, we need to establish base heights with step = size_min */
			for (int y = 0; y <= _height_map.size_y; y += step) {
				for (int x = 0; x <= _height_map.size_x; x += step) {
					Height height = (amplitude > 0) ? RandomHeight(amplitude) : 0;
					_height_map.height(x, y) = height;
				}
			}
			first = false;
			continue;
		}

		/* It is regular iteration round.
		 * Interpolate height values at odd x, even y tiles */
		for (int y = 0; y <= _height_map.size_y; y += 2 * step) {
			for (int x = 0; x <= _height_map.size_x - 2 * step; x += 2 * step) {
				Height h00 = _height_map.height(x + 0 * step, y);
				Height h02 = _height_map.height(x + 2 * step, y);
				Height h01 = (h00 + h02) / 2;
				_height_map.height(x + 1 * step, y) = h01;
			}
		}

		/* Interpolate height values at odd y tiles */
		for (int y = 0; y <= _height_map.size_y - 2 * step; y += 2 * step) {
			for (int x = 0; x <= _height_map.size_x; x += step) {
				Height h00 = _height_map.height(x, y + 0 * step);
				Height h20 = _height_map.height(x, y + 2 * step);
				Height h10 = (h00 + h20) / 2;
				_height_map.height(x, y + 1 * step) = h10;
			}
		}

		/* Add noise for next higher frequency (smaller steps) */
		for (int y = 0; y <= _height_map.size_y; y += step) {
			for (int x = 0; x <= _height_map.size_x; x += step) {
				_height_map.height(x, y) += RandomHeight(amplitude);
			}
		}
	}
}

/** Returns min, max and average height from height map */
static void HeightMapGetMinMaxAvg(Height *min_ptr, Height *max_ptr, Height *avg_ptr)
{
	Height h_min, h_max, h_avg;
	int64_t h_accu = 0;
	h_min = h_max = _height_map.height(0, 0);

	/* Get h_min, h_max and accumulate heights into h_accu */
	for (const Height &h : _height_map.h) {
		if (h < h_min) h_min = h;
		if (h > h_max) h_max = h;
		h_accu += h;
	}

	/* Get average height */
	h_avg = (Height)(h_accu / (_height_map.size_x * _height_map.size_y));

	/* Return required results */
	if (min_ptr != nullptr) *min_ptr = h_min;
	if (max_ptr != nullptr) *max_ptr = h_max;
	if (avg_ptr != nullptr) *avg_ptr = h_avg;
}

/** Dill histogram and return pointer to its base point - to the count of zero heights */
static int *HeightMapMakeHistogram(Height h_min, [[maybe_unused]] Height h_max, int *hist_buf)
{
	int *hist = hist_buf - h_min;

	/* Count the heights and fill the histogram */
	for (const Height &h : _height_map.h){
		assert(h >= h_min);
		assert(h <= h_max);
		hist[h]++;
	}
	return hist;
}

/** Applies sine wave redistribution onto height map */
static void HeightMapSineTransform(Height h_min, Height h_max)
{
	for (Height &h : _height_map.h) {
		double fheight;

		if (h < h_min) continue;

		/* Transform height into 0..1 space */
		fheight = (double)(h - h_min) / (double)(h_max - h_min);
		/* Apply sine transform depending on landscape type */
		switch (_settings_game.game_creation.landscape) {
			case LT_TOYLAND:
			case LT_TEMPERATE:
				/* Move and scale 0..1 into -1..+1 */
				fheight = 2 * fheight - 1;
				/* Sine transform */
				fheight = sin(fheight * M_PI_2);
				/* Transform it back from -1..1 into 0..1 space */
				fheight = 0.5 * (fheight + 1);
				break;

			case LT_ARCTIC:
				{
					/* Arctic terrain needs special height distribution.
					 * Redistribute heights to have more tiles at highest (75%..100%) range */
					double sine_upper_limit = 0.75;
					double linear_compression = 2;
					if (fheight >= sine_upper_limit) {
						/* Over the limit we do linear compression up */
						fheight = 1.0 - (1.0 - fheight) / linear_compression;
					} else {
						double m = 1.0 - (1.0 - sine_upper_limit) / linear_compression;
						/* Get 0..sine_upper_limit into -1..1 */
						fheight = 2.0 * fheight / sine_upper_limit - 1.0;
						/* Sine wave transform */
						fheight = sin(fheight * M_PI_2);
						/* Get -1..1 back to 0..(1 - (1 - sine_upper_limit) / linear_compression) == 0.0..m */
						fheight = 0.5 * (fheight + 1.0) * m;
					}
				}
				break;

			case LT_TROPIC:
				{
					/* Desert terrain needs special height distribution.
					 * Half of tiles should be at lowest (0..25%) heights */
					double sine_lower_limit = 0.5;
					double linear_compression = 2;
					if (fheight <= sine_lower_limit) {
						/* Under the limit we do linear compression down */
						fheight = fheight / linear_compression;
					} else {
						double m = sine_lower_limit / linear_compression;
						/* Get sine_lower_limit..1 into -1..1 */
						fheight = 2.0 * ((fheight - sine_lower_limit) / (1.0 - sine_lower_limit)) - 1.0;
						/* Sine wave transform */
						fheight = sin(fheight * M_PI_2);
						/* Get -1..1 back to (sine_lower_limit / linear_compression)..1.0 */
						fheight = 0.5 * ((1.0 - m) * fheight + (1.0 + m));
					}
				}
				break;

			default:
				NOT_REACHED();
				break;
		}
		/* Transform it back into h_min..h_max space */
		h = (Height)(fheight * (h_max - h_min) + h_min);
		if (h < 0) h = I2H(0);
		if (h >= h_max) h = h_max - 1;
	}
}

/**
 * Additional map variety is provided by applying different curve maps
 * to different parts of the map. A randomized low resolution grid contains
 * which curve map to use on each part of the make. This filtered non-linearly
 * to smooth out transitions between curves, so each tile could have between
 * 100% of one map applied or 25% of four maps.
 *
 * The curve maps define different land styles, i.e. lakes, low-lands, hills
 * and mountain ranges, although these are dependent on the landscape style
 * chosen as well.
 *
 * The level parameter dictates the resolution of the grid. A low resolution
 * grid will result in larger continuous areas of a land style, a higher
 * resolution grid splits the style into smaller areas.
 * @param level Rough indication of the size of the grid sections to style. Small level means large grid sections.
 */
static void HeightMapCurves(uint level)
{
	Height mh = TGPGetMaxHeight() - I2H(1); // height levels above sea level only

	/** Basically scale height X to height Y. Everything in between is interpolated. */
	struct ControlPoint {
		Height x; ///< The height to scale from.
		Height y; ///< The height to scale to.
	};
	/* Scaled curve maps; value is in height_ts. */
#define F(fraction) ((Height)(fraction * mh))
	const ControlPoint curve_map_1[] = { { F(0.0), F(0.0) },                       { F(0.8), F(0.13) },                       { F(1.0), F(0.4)  } };
	const ControlPoint curve_map_2[] = { { F(0.0), F(0.0) }, { F(0.53), F(0.13) }, { F(0.8), F(0.27) },                       { F(1.0), F(0.6)  } };
	const ControlPoint curve_map_3[] = { { F(0.0), F(0.0) }, { F(0.53), F(0.27) }, { F(0.8), F(0.57) },                       { F(1.0), F(0.8)  } };
	const ControlPoint curve_map_4[] = { { F(0.0), F(0.0) }, { F(0.4),  F(0.3)  }, { F(0.7), F(0.8)  }, { F(0.92), F(0.99) }, { F(1.0), F(0.99) } };
#undef F

	/** Helper structure to index the different curve maps. */
	struct ControlPointList {
		size_t length;            ///< The length of the curve map.
		const ControlPoint *list; ///< The actual curve map.
	};
	static const ControlPointList curve_maps[] = {
		{ lengthof(curve_map_1), curve_map_1 },
		{ lengthof(curve_map_2), curve_map_2 },
		{ lengthof(curve_map_3), curve_map_3 },
		{ lengthof(curve_map_4), curve_map_4 },
	};

	Height ht[lengthof(curve_maps)];
	MemSetT(ht, 0, lengthof(ht));

	/* Set up a grid to choose curve maps based on location; attempt to get a somewhat square grid */
	float factor = sqrt((float)_height_map.size_x / (float)_height_map.size_y);
	uint sx = Clamp((int)(((1 << level) * factor) + 0.5), 1, 128);
	uint sy = Clamp((int)(((1 << level) / factor) + 0.5), 1, 128);
	std::vector<byte> c(static_cast<size_t>(sx) * sy);

	for (uint i = 0; i < sx * sy; i++) {
		c[i] = Random() % lengthof(curve_maps);
	}

	/* Apply curves */
	for (int x = 0; x < _height_map.size_x; x++) {

		/* Get our X grid positions and bi-linear ratio */
		float fx = (float)(sx * x) / _height_map.size_x + 1.0f;
		uint x1 = (uint)fx;
		uint x2 = x1;
		float xr = 2.0f * (fx - x1) - 1.0f;
		xr = sin(xr * M_PI_2);
		xr = sin(xr * M_PI_2);
		xr = 0.5f * (xr + 1.0f);
		float xri = 1.0f - xr;

		if (x1 > 0) {
			x1--;
			if (x2 >= sx) x2--;
		}

		for (int y = 0; y < _height_map.size_y; y++) {

			/* Get our Y grid position and bi-linear ratio */
			float fy = (float)(sy * y) / _height_map.size_y + 1.0f;
			uint y1 = (uint)fy;
			uint y2 = y1;
			float yr = 2.0f * (fy - y1) - 1.0f;
			yr = sin(yr * M_PI_2);
			yr = sin(yr * M_PI_2);
			yr = 0.5f * (yr + 1.0f);
			float yri = 1.0f - yr;

			if (y1 > 0) {
				y1--;
				if (y2 >= sy) y2--;
			}

			uint corner_a = c[x1 + sx * y1];
			uint corner_b = c[x1 + sx * y2];
			uint corner_c = c[x2 + sx * y1];
			uint corner_d = c[x2 + sx * y2];

			/* Bitmask of which curve maps are chosen, so that we do not bother
			 * calculating a curve which won't be used. */
			uint corner_bits = 0;
			corner_bits |= 1 << corner_a;
			corner_bits |= 1 << corner_b;
			corner_bits |= 1 << corner_c;
			corner_bits |= 1 << corner_d;

			Height *h = &_height_map.height(x, y);

			/* Do not touch sea level */
			if (*h < I2H(1)) continue;

			/* Only scale above sea level */
			*h -= I2H(1);

			/* Apply all curve maps that are used on this tile. */
			for (uint t = 0; t < lengthof(curve_maps); t++) {
				if (!HasBit(corner_bits, t)) continue;

				[[maybe_unused]] bool found = false;
				const ControlPoint *cm = curve_maps[t].list;
				for (uint i = 0; i < curve_maps[t].length - 1; i++) {
					const ControlPoint &p1 = cm[i];
					const ControlPoint &p2 = cm[i + 1];

					if (*h >= p1.x && *h < p2.x) {
						ht[t] = p1.y + (*h - p1.x) * (p2.y - p1.y) / (p2.x - p1.x);
#ifdef WITH_ASSERT
						found = true;
#endif
						break;
					}
				}
				assert(found);
			}

			/* Apply interpolation of curve map results. */
			*h = (Height)((ht[corner_a] * yri + ht[corner_b] * yr) * xri + (ht[corner_c] * yri + ht[corner_d] * yr) * xr);

			/* Readd sea level */
			*h += I2H(1);
		}
	}
}

/** Adjusts heights in height map to contain required amount of water tiles */
static void HeightMapAdjustWaterLevel(Amplitude water_percent, Height h_max_new)
{
	Height h_min, h_max, h_avg, h_water_level;
	int64_t water_tiles, desired_water_tiles;
	int *hist;

	HeightMapGetMinMaxAvg(&h_min, &h_max, &h_avg);

	/* Allocate histogram buffer and clear its cells */
	int *hist_buf = CallocT<int>(h_max - h_min + 1);
	/* Fill histogram */
	hist = HeightMapMakeHistogram(h_min, h_max, hist_buf);

	/* How many water tiles do we want? */
	desired_water_tiles = A2I(((int64_t)water_percent) * (int64_t)(_height_map.size_x * _height_map.size_y));

	/* Raise water_level and accumulate values from histogram until we reach required number of water tiles */
	for (h_water_level = h_min, water_tiles = 0; h_water_level < h_max; h_water_level++) {
		water_tiles += hist[h_water_level];
		if (water_tiles >= desired_water_tiles) break;
	}

	/* We now have the proper water level value.
	 * Transform the height map into new (normalized) height map:
	 *   values from range: h_min..h_water_level will become negative so it will be clamped to 0
	 *   values from range: h_water_level..h_max are transformed into 0..h_max_new
	 *   where h_max_new is depending on terrain type and map size.
	 */
	for (Height &h : _height_map.h) {
		/* Transform height from range h_water_level..h_max into 0..h_max_new range */
		h = (Height)(((int)h_max_new) * (h - h_water_level) / (h_max - h_water_level)) + I2H(1);
		/* Make sure all values are in the proper range (0..h_max_new) */
		if (h < 0) h = I2H(0);
		if (h >= h_max_new) h = h_max_new - 1;
	}

	free(hist_buf);
}

static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime);

/**
 * This routine sculpts in from the edge a random amount, again a Perlin
 * sequence, to avoid the rigid flat-edge slopes that were present before. The
 * Perlin noise map doesn't know where we are going to slice across, and so we
 * often cut straight through high terrain. The smoothing routine makes it
 * legal, gradually increasing up from the edge to the original terrain height.
 * By cutting parts of this away, it gives a far more irregular edge to the
 * map-edge. Sometimes it works beautifully with the existing sea & lakes, and
 * creates a very realistic coastline. Other times the variation is less, and
 * the map-edge shows its cliff-like roots.
 *
 * This routine may be extended to randomly sculpt the height of the terrain
 * near the edge. This will have the coast edge at low level (1-3), rising in
 * smoothed steps inland to about 15 tiles in. This should make it look as
 * though the map has been built for the map size, rather than a slice through
 * a larger map.
 *
 * Please note that all the small numbers; 53, 101, 167, etc. are small primes
 * to help give the perlin noise a bit more of a random feel.
 */
static void HeightMapCoastLines(uint8_t water_borders)
{
	int smallest_size = std::min(_settings_game.game_creation.map_x, _settings_game.game_creation.map_y);
	const int margin = 4;
	int y, x;
	double max_x;
	double max_y;

	/* Lower to sea level */
	for (y = 0; y <= _height_map.size_y; y++) {
		if (HasBit(water_borders, BORDER_NE)) {
			/* Top right */
			max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.9, 53) + 0.25) * 5 + (perlin_coast_noise_2D(y, y, 0.35, 179) + 1) * 12);
			max_x = std::max((smallest_size * smallest_size / 64) + max_x, (smallest_size * smallest_size / 64) + margin - max_x);
			if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
			for (x = 0; x < max_x; x++) {
				_height_map.height(x, y) = 0;
			}
		}

		if (HasBit(water_borders, BORDER_SW)) {
			/* Bottom left */
			max_x = abs((perlin_coast_noise_2D(_height_map.size_y - y, y, 0.85, 101) + 0.3) * 6 + (perlin_coast_noise_2D(y, y, 0.45,  67) + 0.75) * 8);
			max_x = std::max((smallest_size * smallest_size / 64) + max_x, (smallest_size * smallest_size / 64) + margin - max_x);
			if (smallest_size < 8 && max_x > 5) max_x /= 1.5;
			for (x = _height_map.size_x; x > (_height_map.size_x - 1 - max_x); x--) {
				_height_map.height(x, y) = 0;
			}
		}
	}

	/* Lower to sea level */
	for (x = 0; x <= _height_map.size_x; x++) {
		if (HasBit(water_borders, BORDER_NW)) {
			/* Top left */
			max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 2, 0.9, 167) + 0.4) * 5 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.4, 211) + 0.7) * 9);
			max_y = std::max((smallest_size * smallest_size / 64) + max_y, (smallest_size * smallest_size / 64) + margin - max_y);
			if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
			for (y = 0; y < max_y; y++) {
				_height_map.height(x, y) = 0;
			}
		}

		if (HasBit(water_borders, BORDER_SE)) {
			/* Bottom right */
			max_y = abs((perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.85, 71) + 0.25) * 6 + (perlin_coast_noise_2D(x, _height_map.size_y / 3, 0.35, 193) + 0.75) * 12);
			max_y = std::max((smallest_size * smallest_size / 64) + max_y, (smallest_size * smallest_size / 64) + margin - max_y);
			if (smallest_size < 8 && max_y > 5) max_y /= 1.5;
			for (y = _height_map.size_y; y > (_height_map.size_y - 1 - max_y); y--) {
				_height_map.height(x, y) = 0;
			}
		}
	}
}

/** Start at given point, move in given direction, find and Smooth coast in that direction */
static void HeightMapSmoothCoastInDirection(int org_x, int org_y, int dir_x, int dir_y)
{
	const int max_coast_dist_from_edge = 35;
	const int max_coast_Smooth_depth = 35;

	int x, y;
	int ed; // coast distance from edge
	int depth;

	Height h_prev = I2H(1);
	Height h;

	assert(IsValidXY(org_x, org_y));

	/* Search for the coast (first non-water tile) */
	for (x = org_x, y = org_y, ed = 0; IsValidXY(x, y) && ed < max_coast_dist_from_edge; x += dir_x, y += dir_y, ed++) {
		/* Coast found? */
		if (_height_map.height(x, y) >= I2H(1)) break;

		/* Coast found in the neighborhood? */
		if (IsValidXY(x + dir_y, y + dir_x) && _height_map.height(x + dir_y, y + dir_x) > 0) break;

		/* Coast found in the neighborhood on the other side */
		if (IsValidXY(x - dir_y, y - dir_x) && _height_map.height(x - dir_y, y - dir_x) > 0) break;
	}

	/* Coast found or max_coast_dist_from_edge has been reached.
	 * Soften the coast slope */
	for (depth = 0; IsValidXY(x, y) && depth <= max_coast_Smooth_depth; depth++, x += dir_x, y += dir_y) {
		h = _height_map.height(x, y);
		h = static_cast<Height>(std::min<uint>(h, h_prev + (4 + depth))); // coast softening formula
		_height_map.height(x, y) = h;
		h_prev = h;
	}
}

/** Smooth coasts by modulating height of tiles close to map edges with cosine of distance from edge */
static void HeightMapSmoothCoasts(uint8_t water_borders)
{
	int x, y;
	/* First Smooth NW and SE coasts (y close to 0 and y close to size_y) */
	for (x = 0; x < _height_map.size_x; x++) {
		if (HasBit(water_borders, BORDER_NW)) HeightMapSmoothCoastInDirection(x, 0, 0, 1);
		if (HasBit(water_borders, BORDER_SE)) HeightMapSmoothCoastInDirection(x, _height_map.size_y - 1, 0, -1);
	}
	/* First Smooth NE and SW coasts (x close to 0 and x close to size_x) */
	for (y = 0; y < _height_map.size_y; y++) {
		if (HasBit(water_borders, BORDER_NE)) HeightMapSmoothCoastInDirection(0, y, 1, 0);
		if (HasBit(water_borders, BORDER_SW)) HeightMapSmoothCoastInDirection(_height_map.size_x - 1, y, -1, 0);
	}
}

/**
 * This routine provides the essential cleanup necessary before OTTD can
 * display the terrain. When generated, the terrain heights can jump more than
 * one level between tiles. This routine smooths out those differences so that
 * the most it can change is one level. When OTTD can support cliffs, this
 * routine may not be necessary.
 */
static void HeightMapSmoothSlopes(Height dh_max)
{
	for (int y = 0; y <= (int)_height_map.size_y; y++) {
		for (int x = 0; x <= (int)_height_map.size_x; x++) {
			Height h_max = std::min(_height_map.height(x > 0 ? x - 1 : x, y), _height_map.height(x, y > 0 ? y - 1 : y)) + dh_max;
			if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
		}
	}
	for (int y = _height_map.size_y; y >= 0; y--) {
		for (int x = _height_map.size_x; x >= 0; x--) {
			Height h_max = std::min(_height_map.height(x < _height_map.size_x ? x + 1 : x, y), _height_map.height(x, y < _height_map.size_y ? y + 1 : y)) + dh_max;
			if (_height_map.height(x, y) > h_max) _height_map.height(x, y) = h_max;
		}
	}
}

/**
 * Height map terraform post processing:
 *  - water level adjusting
 *  - coast Smoothing
 *  - slope Smoothing
 *  - height histogram redistribution by sine wave transform
 */
static void HeightMapNormalize()
{
	int sea_level_setting = _settings_game.difficulty.quantity_sea_lakes;
	const Amplitude water_percent = sea_level_setting != (int)CUSTOM_SEA_LEVEL_NUMBER_DIFFICULTY ? _water_percent[sea_level_setting] : _settings_game.game_creation.custom_sea_level * 1024 / 100;
	const Height h_max_new = TGPGetMaxHeight();
	const Height roughness = 7 + 3 * _settings_game.game_creation.tgen_smoothness;

	HeightMapAdjustWaterLevel(water_percent, h_max_new);

	byte water_borders = _settings_game.construction.freeform_edges ? _settings_game.game_creation.water_borders : 0xF;
	if (water_borders == BORDERS_RANDOM) water_borders = GB(Random(), 0, 4);

	HeightMapCoastLines(water_borders);
	HeightMapSmoothSlopes(roughness);

	HeightMapSmoothCoasts(water_borders);
	HeightMapSmoothSlopes(roughness);

	HeightMapSineTransform(I2H(1), h_max_new);

	if (_settings_game.game_creation.variety > 0) {
		HeightMapCurves(_settings_game.game_creation.variety);
	}

	HeightMapSmoothSlopes(I2H(1));
}

/**
 * The Perlin Noise calculation using large primes
 * The initial number is adjusted by two values; the generation_seed, and the
 * passed parameter; prime.
 * prime is used to allow the perlin noise generator to create useful random
 * numbers from slightly different series.
 */
static double int_noise(const long x, const long y, const int prime)
{
	long n = x + y * prime + _settings_game.game_creation.generation_seed;

	n = (n << 13) ^ n;

	/* Pseudo-random number generator, using several large primes */
	return 1.0 - (double)((n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0;
}


/**
 * This routine determines the interpolated value between a and b
 */
static inline double linear_interpolate(const double a, const double b, const double x)
{
	return a + x * (b - a);
}


/**
 * This routine returns the smoothed interpolated noise for an x and y, using
 * the values from the surrounding positions.
 */
static double interpolated_noise(const double x, const double y, const int prime)
{
	const int integer_X = (int)x;
	const int integer_Y = (int)y;

	const double fractional_X = x - (double)integer_X;
	const double fractional_Y = y - (double)integer_Y;

	const double v1 = int_noise(integer_X,     integer_Y,     prime);
	const double v2 = int_noise(integer_X + 1, integer_Y,     prime);
	const double v3 = int_noise(integer_X,     integer_Y + 1, prime);
	const double v4 = int_noise(integer_X + 1, integer_Y + 1, prime);

	const double i1 = linear_interpolate(v1, v2, fractional_X);
	const double i2 = linear_interpolate(v3, v4, fractional_X);

	return linear_interpolate(i1, i2, fractional_Y);
}


/**
 * This is a similar function to the main perlin noise calculation, but uses
 * the value p passed as a parameter rather than selected from the predefined
 * sequences. as you can guess by its title, i use this to create the indented
 * coastline, which is just another perlin sequence.
 */
static double perlin_coast_noise_2D(const double x, const double y, const double p, const int prime)
{
	double total = 0.0;

	for (int i = 0; i < 6; i++) {
		const double frequency = (double)(1 << i);
		const double amplitude = pow(p, (double)i);

		total += interpolated_noise((x * frequency) / 64.0, (y * frequency) / 64.0, prime) * amplitude;
	}

	return total;
}


/** A small helper function to initialize the terrain */
static void TgenSetTileHeight(TileIndex tile, int height)
{
	SetTileHeight(tile, height);

	/* Only clear the tiles within the map area. */
	if (IsInnerTile(tile)) {
		MakeClear(tile, CLEAR_GRASS, 3);
	}
}

/**
 * The main new land generator using Perlin noise. Desert landscape is handled
 * different to all others to give a desert valley between two high mountains.
 * Clearly if a low height terrain (flat/very flat) is chosen, then the tropic
 * areas won't be high enough, and there will be very little tropic on the map.
 * Thus Tropic works best on Hilly or Mountainous.
 */
void GenerateTerrainPerlin()
{
	if (!AllocHeightMap()) return;
	GenerateWorldSetAbortCallback(FreeHeightMap);

	HeightMapGenerate();

	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

	HeightMapNormalize();

	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

	/* First make sure the tiles at the north border are void tiles if needed. */
	if (_settings_game.construction.freeform_edges) {
		for (uint x = 0; x < Map::SizeX(); x++) MakeVoid(TileXY(x, 0));
		for (uint y = 0; y < Map::SizeY(); y++) MakeVoid(TileXY(0, y));
	}

	int max_height = H2I(TGPGetMaxHeight());

	/* Transfer height map into OTTD map */
	for (int y = 0; y < _height_map.size_y; y++) {
		for (int x = 0; x < _height_map.size_x; x++) {
			TgenSetTileHeight(TileXY(x, y), Clamp(H2I(_height_map.height(x, y)), 0, max_height));
		}
	}

	IncreaseGeneratingWorldProgress(GWP_LANDSCAPE);

	FreeHeightMap();
	GenerateWorldSetAbortCallback(nullptr);
}